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Melatonin Induces Parthenocarpy by
Regulating Genes in Gibberellin
Pathways of ‘Starkrimson’ Pear
(Pyrus communis L.)

Jiantong Liv, Rui Zhai, Fengxia Liu, Yingxiao Zhao, Huibin Wang, Lufu Liu,
Chengguan Yang, Zhigang Wang, Fengwang Ma and Lingfei Xu*

Coliga of Horticuttors, MNorthweash A5F University, Yangling, Ching

Parthenocarpy, the production of seedless fruit without fertilization, has a variety of
valuable qualities, especially for sell-incompatible species, such as pear. To explore
whether melatonin (MT) induces parthenocarpy, we used 'Slarkrimson’ pear as a
material for morphological observations. According to our resulls, exogenous MT
promoted the expansion and division of the mesocarp cells in a manner similar to
hand pollination. However, the seads of exogenous MT-treated fruit were undeveloped
and aborted later in the fruit-setting stage, To further investigate how MT induced
parthenccarpy, we studied changes of relaled hormones in the ovaries and found that
MT significantly increased the contents of the gibberelins (GAs) GA; and GA;4. Thus,
paclobutrazol (PAC), a GA-biosynthesis inhibitor, was used to study the relationship
bebween GAs and MT. In addition, spraying MT after treatrment with PAC did not increase
GA content nor lead to parthenocarpy. Through a transcriptome analysis, we discovered
that MT can cause significant upregulation of PHGAZ00x and downregulation of
PbGAZox. However, no significant difference was observed in PbGAZox compared
with the control after PAC and MT applications. Thus, MT induces parthenocarpy by
promoting Ga biosynthesis along with cell division and mesocarp expansion in pear,

Keywords: melatonin, pear, parthenocarpy, gibberellin, cell division, cell expansion, transcriptome analysis

INTRODUCTION

Parthenocarpy, the production of seedless fruit, induces fruit development naturally or artificially
without the fertilization of ovules (Gustatson, 1942). As an important cultivated fruit worldwide,
most pears are self-unfruitful because of their gametophytic self-incompatibility. Without
pollination, the trees can only generate fruit by parthenocarpy (Spena and Rotino, 2001).
Determining an efficient method to produce pear fruit by parthenocarpy is therefore important.
Plant hormones affect fruit set, growth and development (Srivastava and Handa, 2005).
Parthenocarpy can be induced by exogenous applications of plant hormones. Most genes involved
in fruit set are related to growth regulators of fruit development, such as gibberellins (GAs) and
auxins {Ozga and Reinecke, 2003). Auxin indole-3 -acetic acid (IAA) can also induce parthenocarpy
in many horticultural plants, such as tomato, cucumber, and zucchini (Martinelli et al., 2009
Pomares-Viciana et al., 2017). In addition, parthenocarpy can be controlled by a single gene, such
ds a transcriptional factor or a receptor in phytohormone signaling pathways (Marti et al., 2007;



Serrani et al., 2010 Fuentes et al,, 201 2). Although two important
auxin-responsive gene families, auxin response factor (ARF) and
AUN/IAA, are related to the development of parthenocarpic
fruit in Arabidopsis thaliana and Selanum eepersicum (tomato)
(Kumar et al., 2011). Dorcey et al. (2009) found that GA is
downstream of auxin in the regulatory process of parthenocarpy
in these two species. GAs can induce parthenocarpy in many fruit
trees, such as apple (Watanabe et al., 2008), loquat {(Aslmoshtaghi
and Shahsavar, 2013), pea(.:h (Crane et al., 1960), and pear
(Miu et al,, 2015). The GA content of the parthenocarpic citrus
variety “Satsuma’ is higher than that of the non-parthenocarpic
‘Clementine, which indicates that endogenous GA promotes
parthenocarpic development (Talon et al., 19492). Overexpression
of the GA 20-oxidase (GAZox) gene CelGAZ200x! from the
citrange ‘Carrizo’ (Citrus sinensis L. Osbeck = Poncirus trifoliata
L. Raf) aids the development of parthenocarpic fruits in tomato
{Greco et al, 2012). GA2oxs are catabolic enzymes that deactivate
active Gas. In one study, the silencing of five GAZox genes in
transgenic tomato plants resulted in a significant increase in their
GAy content and ability to undergo parthenocarpy (Martinez
belloetal., 2015},

Melatonin (MT) is an important plant growth regulator
that can improve resistance to biotic and abiotic stresses, such
as pathogen attack (Yin et al, 2013), extreme temperature
(Tiryaki and Keles, 2012), excess copper (Posmyk et al,, 2008);
intense light (Tiryaki and Keles, 2012, salinity (Li et al., 2012,
drought (Liu et al., 2015), and senescence (Wang et al., 2013),
MT, which plays a major role in regulating plant rhythm
and plant growth, is involved in root morphology, senescence,
seed germination, crop vield, and fruit ripening (Arnac and
Herndndez-Ruiz, 2015; Reiter et al., 2015; Tan et al., 2015). These
functions are similar to those of IAA in plants, and they have a
common precursor, tryptophan. In addition, a low concentration
of MT (10 pmol L™Y) in growing plants can promote
carbohydrate metabolism, photosynthesis, and sucrose loading
and transportation in phloem, thus promoting plant growth;
in contrast, a high MT concentration {1 mmol L™!) inhibits
sucrose loading in phloem and promotes the accumulation of
excess sugar, hexose, and starch in leaves. A feedback mechanism
involving MT thus controls leaf photosynthesis and plant growth
{(Zhao et al, 2015). A concentration effect of MT on plant
growth and photosynthesis has also been confirmed in cherry
(Sarropoulou et al., 201 2). In Datura metel ‘Mandala, MT content
is highest in developing flower buds; it decreases during flower
bud maturation but then increases during early fruit development
{Murch et al., 2004). A similar result has been observed in tomato
{Okazaki and Esura, 2009). MT therefore likely has a specific
role in plant reproduction and helps trigger a sexual to asexual
transformation in plants. MT may thus induce parthenocarpy.
Moteworthily, GA causes parthenocarpy in pear {Zhang et al,,
2017). In addition, MT can regulate GA synthesis (Zhang et al.,
2017) and stabilizes the GA downstream inhibitor DELLA (Shi
et al, 2016). We therefore further speculate that MT causes
parthenocarpy by regulating GA pathways.

To test the above hypothesis, we carried out
histomorphological observations, high-performance  liquid
chromatography-tandem mass spectrometry (HPLC-MS/MS)

and transcriptomics analyses of pear ovaries after MT treatments.
Our results confirm that MT can induce parthenocarpy in
*Starkrimson” pear (Pyrus commumis L) and provide evidence

that MT causes parthenocarpy by regulating GA pathways,

MATERIALS AND METHODS

Plant Material, Growth Conditions, and
Treatments

Experiments were carried out in a pear orchard located in
Wugong, Shaanxi Province, China (34.12°N, 106.26°E). Wugong
has a continental monsoon climate, with an average annual
precipitation of 633.7 mm and an average annual temperature
of 127°C. During anthesis, the average temperature was 10°C,
with an average humidity of 71% and total rainfall of 45.68 mm.
Four-year-old "Starkrimson’ pear (P. communis L.) grafted onto
Cydonia oblonga rootstock were used as the experimental
material. Two days before anthesis, all treated and conirol
plants were bagged to prohibit pollination. Healthy and uniform
plants were subjected to one of four treatments: (i) water on
unpollinated flowers, serving as the non-pollination treatment
(CE); (i) asolution of | mmaol L™ LAA (IAA) [the concentration
previously determined by de Jong et al. (2009)] sprayed on
unpollinated ‘Starkrimson’ flowers at anthesis; (iii) a solution of
100 pmol L™ MT (MT) (the concentration giving the highest
fruit set rate in preliminary tests; Supplementary Figure 1), also
sprayed on unpollinated ‘Starkrimson” flowers at anthesis; and
(iv}) hand pollination, performed at the same time. Other healthy
and uniform plants were assigned to two test conditions: (i)
standard water supply or (i) a water solution supplemented with
100 pmol L=! PAC. For the two groups, solutions of 100 j.mol
L= MT were sprayed on unpollinated ‘Starkrimson” flowers at
anthesis, referred to as MT and MF, respectively {Supplementary
Figure 52). A part of each sample was immediately fixed in
formalin-acetc-alcohol for histological observation. After being
rapidly frozen in liquid nitrogen, the other tissues were stored at
—B0°C.

Determination of Fruit Set Rate

A total of 50 blooms on each pear tree were labeled and bagged
immediately after treatment. At 20 days after anthesis (DAA), the
bags were removed. The formula used to calculate the fruit set
rate was as follows:

Fruit set rate (%) = (number of fruitlets remaining/30) = 100%.

Vascular Bundles Staining and Paraffin
Sectioning Methods

For histological observations, stalks from fruit samples that were
collected 10 DAA were immediately stained in alkaline magenta
solution and observed under a stereoscopic microscope at specific
timepoints,

Non-pellinated, hand pollinated, and MT-treated fruit
samples were collected at 5 DAA, immediately fixed in formalin-
aceto-alcohol solution and stored at 4°C (Phillips and Hayman,
1970). The ovaries were dehydrated in an ethanol and xylene



series, embedded in paraffin, sectioned into 8-jum slices, dried,
and stained with safranine and fast green (Lin et al., 2007).
Anatomical images were observed using a microscopic imaging
system (BX514PD7241X71, OLYMPUS, Japan). Cell arcas were
ascertained from mesocarp longitudinal sections (30 cells per
section from 10 to 15 sections) using Image| software.

Soluble Solid and Organic Acid
Contents, Peduncle Length and Fruit
Shape Index Analysis

The content of soluble solids was determined at 25°C using
a portable system (Pocket Refractometer PAL-1, Atago, Japan).
Organic acids were measured using a portable system (GMEK-
835F G-WON, Korea) over a range of (.0-3.5% with an accuracy
of + 0.05%. All measurements were performed on 10 replicates,
each consisting of a single fruit.

A vernier caliper was used to measure peduncle length. The
formula used to calculate fruit shape index was as follows:

Fruit shape index = fruit suture diameter/polar diameter.

Phytohormone Analysis

Levels of GAs, GA4, 1AA, and abscisic acid (ABA) were
determined by HPLC-MS/MS. Approximately 0.5 g of ovaries
was ground in a pre-cooled mortar containing 5 mL of extraction
buffer composed of isopropanol and hydrochloric acid. The
extract was shaken at 4°C for 30 min. Then, 10 mL of
dichloromethane was added, and the sample was again shaken
at 4°C for 30 min. The sample was then centrifuged at 18,000 = g
for 5 min at the same temperature, and the lower, organic
phase was extracted. The organic phase was dried under N3,
dissolved in 150 pL methanol (0.1% methane acid) and filtered
through a 0.22-pm filter membrane. The purified product was
then subjected to HPLC-MS/MS analysis. The HPLC analysis
was performed using a ZORBAX SB-C18 (Agilent Technologies,
United States) column (2.1 mm > 150 mm; 3.5 mm). The mobile
phase A solvent consisted of methanol and 0.1% methanoic acid,
and the mobile phase B solvent consisted of ultrapure water
and 0.1% methanoic acid. The injection volume was 2 pL. MS
conditions were as follows: a spray voltage of 4,500 V, and air
curtain, nebulizer, and auxin gas pressures of 15, 65, and 70 psi,
respectively, The atomizing femperature was 4007 C, Each sample
consisted of three replicates from independent experiments,

Transcriptome Analysis

Owvaries for RNA sequencing were collected from unpollinated,
hand pollinated, MT-treated (without pollination), and MEP-
treated ‘Starkrimson” at 5 DAA. Three independent biological
replications were sequenced and analyzed.

A total of 3 pg RNA per sample was used as input
material for RNA sample preparations. Sequencing libraries were
generated using a NEBNext® Ultm™ RNA Library Prep Kit
for Mumina® (NEB, United States) following manufacturers
recommendations, and index codes were added fo atiribute
sequences to each sample. The clustering of the index-coded
samples was performed on a cBot Cluster Generation System

using a TruSeq PE Cluster Kit v3-cBot-HS (llumina). After
cluster generation, the library preparations were sequenced on
an Mumina HiSeq platform and 1 25-bp/150-bp paired-end reads
were generated. Raw data (raw reads) in FASTQ format were
first processed using an in-house Perl script. In this step, clean
data (clean reads) were obtained by removing reads containing
adapters, reads containing poly-N and low-quality reads from the
raw data. All downsiream analyses were based on clean data of
high quality. The index of the reference genome was built using
Bowtie v2.2.3, and paired-end clean reads were aligned to the
reference genome using TopHat v2.0.12. HT Seq v(.6.1 was used
to count the read numbers mapped to each gene.

The resulting P-values were adjusted using Benjamini and
Hochberg's approach for controlling the false discovery rate.
Genes with an adjusted P-value < 0.05 according to DESeq were
considered to be differentially expressed. Genes were annotated
using the ‘Dangshansuli’ database’ as a reference.

Gene Expression Assessed by
Quantitative Real-Time PCR (qRT-PCR)

Quantitative real-time PCR was performed onan ABl instrument
using a SYBR Premix Ex Taq kit (Takara). The cDNA template
was reverse transcribed using total RNA extracted from the five
treatments at 5 DAA. Actin was used as an internal reference
for the gene expression analysis. Primers for selected genes
were designed using Primer Premier 5.0 software. The PCR
amplification were carried out using the following program:
initial incubation at 95°C for 30 s, followed by 40 cycles at 95°C
for 5 s and 60°C for 30 s. Primers are listed in Supplementary
Table 1. All reactions had triple biological repeats.

Statistical Methods

Data were statistically analyzed by analysis of variance and tested
for significant (P = 0.05) treatment differences using Duncan’s
test. Results are presented as means + standard deviation (SD) of
three replicate samples.

RESULTS

To investigate the effects of MT on fruit set, pear plant at
the full-bloom stage were subjected to four treatments. Non-
pollination-treated and [AA-treated ovaries did not develop
normally, but the MT-treated ovaries were similar in size
to those that were hand pollinated at 10 DAA (Figure 1).
Hand pollination led to normal seeded fruits, while, MT-treated
ovaries developed normal fruits without seeds (Figure 1). Fruits
underwent apoptosis on the 10th day, and vascular tissues
disintegrated in unpollinated carpopodia, resulting in an inability
to transport nutrients normally. Vascular bundles developed
normally in MT and hand-pollinated carpopodia, and the ovaries
could be stained successfully with basic fuchsin staining for
30 min (Supplementary Figure 53). During the post-harvest
storage period, MT had no significant effects on organic acid
and soluble solid contents of fruits but significantly increased

huttpedwww nchinlm.nih,govd genome! flerm=pyrus
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peduncle length and fruit shape index, For the fruit shape index,
MT increased the fruits longitudinal diameter and shortened
the fruits equatorial diameter, resulting in more slender fruit
(supplementary Figure 54). This result suggests that MT did net
alter fruit flavor, like parthenocarpy in pear, but did change fruit
appearance.

To observe how MT causes fruit elongation, histological
of  fruit performed
developmental stages. Mesocarp, the edible part of the fruit,

observations tissues  were at  early
comprised up to 31 cell layers after MT treatment, while that of
the CK group consisted of ~17 cell layers. Likewise, the area of
mesocarp cells in MT ovaries was larger than in the CK, but there
was no significant difference between the sizes of the MT and
HFP ovaries (Figure 2 and Table 1}. In the absence of pollination
and fertilization, however, MT did not increase the cell division
of seeds compared with that in the CK. The number of ovular
cell layers was much lower than the 22 layers found afier hand
pollination (Figure 2 and Table 1). MT thus can promote cell
division and expansion, but nol normal evular development.
[ndole-3-acetic acid contents of ovaries significantly increased
after spraying with an IAA solution, but parthenocarpy did
not occur, The MT treatment did not significantly increase the
[AA content, while hand pollination decreased the IAA content

(Figure 3A and Supplementary Figure 55). Thus, IAA was not

with other treatments. CK, control; 144, indole-3-acatic acid treatmant. MT,

the key factor in pear fruit set for parthenocarpy. The ABA
content of MT-treated ovaries was significantly lower than in
the CK group at 5 DAA. MT, as well as hand pollination, could
reduce ABA content, thereby promoting fruit set (Figure 3B and
Supplementary Figure 55). On the 5th day, no GAz was detected
in the CK group, whereas the contents of bioactive GAj in the
ovaries increased significantly after the MT treatment (Figure 3C
and Supplementary Figure 55). After the HP treatment, the
GAy content increased to 145 ng g=" fresh weight (FW), 13-
fold higher than in the CK, while GA4 content was twolold
higher than in the CK after MT treatment (Figure 3D and
Supplementary Figure 55). We thus speculated that MT induces
the production of binactive GAs.

We also studied the relationship between MT and GA using
PAC. After treatment with PAC, spraying with MT did not lead
to parthenocarpy (Figure 4A). The level of GA was significantly
inhibited, GA:; was not detected in ovaries, and the GAy
contents reached 12,87 ng g7 FW, which was consistent with
the CK group. Thus, PAC inhibited GA synthesis, and GA is
downstream of MT in the regulatory process of parthenocarpy
(Figures 4B,C).

To of the
transcriptome  during MT- and MP-treatments and hand
pollination, ovaries were harvested at 5 DAA. We obtlained

obtain a general overview Starkrimson’
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FIGURE 2 | Histological obsarvations of 'Starkrimson’ pericarps 5 days after anthesis (DA4), (A} CK. contrel. (B) MT, melatonin freatment; and (G} HE hand
polination, ME, mesocan: OV, ovule,

TABLE 1 | Mumber of mesocarp and ovule layers, and comespondng cel sizes,

Treatments Callular layers Caoll area jpm?)
Mesocarp Ovule Measocarp Ovule
cK 1775+ 2.63b - 55395 + 43.28D =
MT 3081 15.25 + 0.50b B23.56 £ 8374 108.46 £ 28.30a
HP 334 3388 2250 £1.91a T72.46 & 71.32a 9525+ 21502

Coll area valuves are means of three repicates, with 30 cels per replicate (£ S0 Different lefters within & column indicate significant diferences at P < 0.05 (Duncan's
range lest).

41,845,974-59,518,366 clean reads from the samples, and more Differentially expressed genes (IDEGs) were grouped based
than 69% of the clean reads were mapped to the reference pear  upon their biclogical functions using MapMan to analyze
{Pyrus bretschneideri Rehd.) genome (Supplementary Table 82).  carbohydrate  and  photosynthesis-related  metabolisms.
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Photosynthesis-related  genes were activated, with 183
upregulated DEGs in pollinated ovaries and 144 upregulated
DEGs in MT-induced parthenocarpic fruit. After blocking GA
synthesis, however, only 60 upregulated DEGs were detected in
ovaries (Supplementary Figure 56 and Supplementary Table $5).
Similarly, cell division-related and cell expansion-related genes
were upregulated in MT-induced parthenocarpic fruit, as
well as in pollinated ovaries (Supplementary Table 56). With
the exception of a downregulated PHCyelinAl-1 gene, the
differentially expressed cyclins were upregulated in MT-treated
ovaries at 5 DAA. CyelinA2 was upregulated more than fourfold
(log2 fold change) in both MT-treated and pollinated ovaries.
RNA sequencing showed that 12 and 17 expansion genes
were regulated during MT and HP treatments, respectively, of
which % and 15 genes, respectively, were upregulated (Figure 5
and Supplementary Table $6). Six unigenes were chosen for
quantitative PCR from cyclin- and expansion-related genes, and
they exhibited similar expression tendencies as determined by
the sequencing results (Supplementary Figure 7). Thus, MT can
regulate carbohydrate and photosynthesis-related metabolisms
and also promotes cell division and cell expansion in the early
fruit setting stage.

To further investigate the regulatory mechanisms of MT, we
analyzed changes in the expression of phytohormone-related
genes in the transcriptome. A number of genes in the GA
biosynthesis pathway were induced. Two genes encoding ent-
kaur-16-ene synthase were significantly upregulated in MT- and
HP-treated ovaries (Figure 6). MT led to the upregulation af
PhGA200x2 (LOC103942611), to twofold higher than in the

Fromters in Plant Science | wwaw frontiersn ong B

CK, while HP caused a significant upregulation of PhGA200x2
(LOC103960493), to fourfold higher than in the CK. In MT
and HP treatments, five GA2ox genes showed significant
downregulation, among which PhGA2ox (LOCI03951277) was
downregulated sevenfold in the HP treatment and fourfold
in the MT treatment, while PhGA20x2 (LOCI03956941) was
downregulated fivefold in the MT treatment and fourfold in
the HP treatment. In the MP group, only one GAZox was
downregulated, and no significant differences were observed
between the other GAZoxs and those of the CK group
(Figure 6 and Supplementary Table 53). Four GA synthesis-
related unigenes were chosen for quantitative PCR, and they
exhibited similar expression tendencies as those determined by
the sequencing results. No differences in PhGA200x2 expression
was detected at 2 DAA, but GAZoxs showed differential
expression levels at 5 DAA (Figure 7). To conclude, MT mainly
downregulated the expression of the GA2oxs in the GA synthesis
pathway, resulting in the synthesis of bivactive GA. Auxin- and
ABA-mediated signaling pathways were also activated. In total,
106 and 96 DEGs involved in auxin and ABA signal transduction,
respectively, were also modified (Supplementary Figure S8 and
Supplementary Table 54),

DISCUSSION

Parthenocarpy, the production of seedless fruit without
fertilization, can be either natural or artificial. Parthenocarpy
is highly beneficial, as insects or pollinizers are not needed

Juhy 2018 | Volema 9 | Artcle D45



to produce seedless [ruits thal are popular with consumers. Plant
hormones such as auxin can induce parthenocarpy in various
plants, including cucumber, tomato, and muskmelon (Marioni
et al, 2011). According to our results, exogenous MT can also
induce parthenocarpy in pear.

Melatonin acts as a growth promoter in many species,
functioning in a similar manner as [AA (Chen et al, 2009
Park and Back, 2012). Interestingly, we found that exogenous
MT induced parthenocarpy in pear, whereas exogenous [AA
could not (Figure 1). Previous studies have shown that ovaries
synthesize large amounts of IAA post-pellination to promote
fruit development (Bermejo et al, 2015). In our study, [AA
content as well as the number of seed cell layers in the ovary did
not increase after MT treatment, and IAA content declined alter
pollination compared with the control. These results contradict
other results in which IAA induced parthenocarpy in tomato and
eggplant (Do et al, 2016). Auxin-mediated signaling pathway-
related genes did not change consistently after MT treatment.
These results indicate that IAA is not a major factor in pear
parthenocarpy,

Photosynthesis and  carbohydrate metabolism  provide
necessary nutrition for fruit and seed set. In tomato, expression
levels of photosynthesis-associated genes are upregulated
during the parthenogenetic process (Wang et al,, 2009). Our
analysis corroborated those results, as most photosynthesis-
and carbohydrate-related genes were upregulated after MT
treatment. In regards to photosystems | and 1, chlorophyll-
related genes were significantly upregulated, with chlorophyll
a-b binding protein and photosystem | reaction center subunit
also significantly upregulated under MT induction. In contrast,
DEGs were significantly reduced afier pretreatment with PAC.
Among carbohydrate-related genes, starch synthase genes
were downregulated, sucrose synthase genes were upregulated,
and genes related to sucrose degradation enzymes were
significantly downregulated. These patterns may be related
to the accumulation of nutrients during fruit development.
In the MP-treated group, however, the number of DEGs was
significantly reduced. This result suggests that MT regulates
the mechanisms of photosynthesis and carbohydrate induction
through the GA pathway (Supplementary Table 55). As revealed
by vascular bundle staining, nutrients of unpollinated plants
could not be transported to the ovary at 10 DAA and thus could
not promaote normal fruit development. In MT and HP groups,
however, plant vascular bundles remained intact and could
therefore transport nutrients normally. In addition to proper
nutrient uptake, MT can further promote cell division and cell
expansion, a conclusion confirmed by cell histology observation.
At the transcriptome level, plant cyclin genes are important
in regulating the commitment of cells to cell division during
plant growth and development (Eiou-Khamlichi el al., 1999). In
Arabidopsis, the overexpression of AICYCD genes enhances cell
division and accelerates plant development (Collins et al,, 2012).
Expansin A and B belong 1o the «- and f-expansin families,
respectively, and many of their members have the ability to
induce rapid cell expansion (Kende ¢ al, 2004). In tomato and
litchi, expansin genes are differentially expressed in growing
and ripening fruit, suggesting that expansins are involved in
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through induced GA biosynithesis,

fruit growth and development (Brummell et al, 19949). Thus,
plant cyclins and expansins play important roles in cell division
and plant development (Choi et al,, 2006). Transcriptome data
showed that the numbers of cell cycle- and cell expansion-
related genes were maodified by MT treatment. In particular,
cyelins, except for PhCyclinA 1-1, were upregulated, and 9 of 12
differentially regulated expansins were upregulated. After PAC
treatment, the number of DEGs in MP-treated samples was
significantly reduced, which suggests that MT can promote cell
division and cell expansion through the GA pathway (Figure 5
and Supplementary Table 56).

Gibberellins play important roles during parthenocarpy and
fruit development in pear (Miu et al, 2015). In different plant
species, the overexpression of GA-biosynthesis genes leads to the
following characteristic phenotype: longer hypocotyls and roots,
and taller plants with longer and thinner internodes (Eriksson
et al, 2000; Vidal et al,, 2001). In pear after MT treatment in our
study, GA; and GA,4 contents of ovaries increased, the fruit shape




index increased significantly, fruit transverse diameter decreased
and the longitudinal diameter obviously increased, all effects
similar to those of GA treatment (Figure 3 and Supplementary
Figure 54). C20-GAs have a full complement of 20 carbon
atoms, whereas C19-GAs possess only 19 carbon atoms, having
lost carbon-20 by metabolism, C20-GAs do not normally have
any biological activity, but they can be metabolized to CI19-
GAs that may be bicactive. C19-GAs include GAz and GA4
(Sponsel and Hedden, 2010). MT may thus increase bicactive
GAs (GAsz and GAy) during the parthenocarpy process. Zhang
et al. (2014) have also confirmed that MT can increase the
GAy content of cucumber under high salinity stress, a finding
in agreement with our results. PAC has been used to study
the interaction mechanisms of different hormones and GAs in
tomato and Arabidopsis (Ding et al, 2015; Zhang et al., 2017).
After treatment with PAC, TAA-induced parthenocarpy is greatly
reduced in tomato (Serrani ¢t al, 2008). In our study, MT
could induce parthenocarpy; after PAC pretreatment, however,
MT did not lead to parthenocarpy, which indicates that GA
is downstream of the regulatory process. Many key enzymes
genes in the GA synthesis pathway are differentially regulated
during parthenocarpy. Expression levels of GA20ox and GA3ox,
which promote GA synthesis, are increased after pollination but
are significantly decreased in unpollinated ovaries (Talon et al.,
1992, Fos et al, 2001). Moreover, overexpression of GAZ2(ox
in citrus and tomato can induce parthenocarpy (Garciahurado
etal,, 201 2). GA2ox can inactivate GAy, GAy and their precursors
(Riew et al.,, 2008), all of which are involved in the main GA-
inactivating process. GAZ2ex plays important roles in regulating
GA levels in ovaries and axillary buds, and silencing this gene
can promote parthenocarpic fruit growth (Martinez-bello et al.,
2015). GA20ox and GAZox are the key genes with important
functions in parthenccarpy. In our study, MT upregulated
the expression of GA20ox, whereas the expression of GAZox
was downregulated in MT and HP groups. In the MP group,
no significant changes in the key genes of the GA synthetic
pathway were observed compared with the CK (Supplementary
Table §3). We thus infer that MT significantly promotes GA
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